1912.07936v2 [cs.SE] 18 Dec 2019

arxiv

Probabilistic Software Modeling:
A Data-driven Paradigm for Software Analysis

Hannes Thaller, Lukas Linsbauer, Alexander Egyed

Institute for Software Systems Engineering
Johannes Kepler University Linz, Austria

{hannes.thaller, lukas.linsbauer, alexander.egyed} @jku.at

Abstract—Software systems are complex, and behavioral com-
prehension with the increasing amount of AI components chal-
lenges traditional testing and maintenance strategies. The lack
of tools and methodologies for behavioral software comprehen-
sion leaves developers to testing and debugging that work in
the boundaries of known scenarios. We present Probabilistic
Software Modeling (PSM), a data-driven modeling paradigm for
predictive and generative methods in software engineering. PSM
analyzes a program and synthesizes a network of probabilistic
models that can simulate and quantify the original program’s be-
havior. The approach extracts the type, executable, and property
structure of a program and copies its topology. Each model is then
optimized towards the observed runtime leading to a network
that reflects the system’s structure and behavior. The resulting
network allows for the full spectrum of statistical inferential
analysis with which rich predictive and generative applications
can be built. Applications range from the visualization of states,
inferential queries, test case generation, and anomaly detection
up to the stochastic execution of the modeled system. In this work,
we present the modeling methodologies, an empirical study of the
runtime behavior of software systems, and a comprehensive study
on PSM modeled systems. Results indicate that PSM is a solid
foundation for structural and behavioral software comprehension
applications.

Index Terms—probabilistic modeling, software modeling, static
code analysis, dynamic code analysis, runtime monitoring, infer-
ence, simulation, deep learning, normalizing flows

I. INTRODUCTION

Software complexity increases with every requirement,
feature, revision, module, or software 2.0 (Artificial Intelli-
gence (Al)) component that is integrated. Complexity related
challenges in traditional software engineering have many tools
and methodologies that mitigate and alleviate issues (e.g.,
requirements engineering, version control systems, unit testing).
However, tight integration of Al components in programs is
still in its infancy and so are the methodologies and tools that
allow combined analysis, development, testing, integration, and
maintenance.

We present Probabilistic Software Modeling (PSM), a data-
driven modeling paradigm for predictive and generative meth-
ods in software engineering. PSM is an analysis methodology
for traditional software (e.g., Java [1]) that builds a Probabilistic
Model (PM) of a program. The PM allows developers to reason
about their program’s semantics on the same level of abstraction
as their source code (e.g., methods, fields, or classes) without
changing the development process or programming language.
This enables the advantages of probabilistic modeling and

Rudolf Ramler
Software Competence Center Hagenberg GmbH
Austria
rudolf.ramler @scch.at

causal reasoning for traditional software development that
are fundamental in other domains (such as medical biology,
material simulation, economics, meteorology). PSM enables
applications such as test-case generation, semantic clone
detection, or anomaly detection seamlessly for both, traditional
software as well as Al components and their randomness. Our
experiments indicate that PMs can model programs and allow
for causal reasoning and consistent data generation that these
applications are built on.

PSM has four main aspects: Code (Structure), Runtime
(Behavior), Modeling, and Inference. First, PSM extracts
a program’s structure via static code analysis (Code). The
abstraction level is properties, executables, and types (e.g.,
fields, methods, and classes in Java) but ignores statements,
allowing PSM to scale. Second, it inspects the program’s
behavior by observing its runtime (Runtime). This includes
property accesses and executable invocations. Then, PSM
combines this static structure and dynamic behavior into a
probabilistic model (Modeling). This step also represents the
main contribution of this work. Finally, predictive or generative
applications (e.g., a test-case generator or anomaly detector)
leverage the models via statistical inference (Inference).

The prototype used for the evaluation is called Gradient'
and is openly available.

First, Section IT views our contribution from the perspective
of existing related domains. Section III introduces an illustrative
example we use throughout this paper. In Section IV we
motivate our contribution by providing an outlook on possible
applications and research opportunities that PSM enables. Then
we briefly discuss the nomenclature and background needed
to understand PSM (Section V). Section VI presents the main
contribution containing the general usage pragmatism and
construction methodologies for PSM models on a conceptual
level. A comprehensive evaluation of whether software can be
transformed into statistical models is given in Section VII and
discussed in Section VIII. Section XI concludes the paper.

II. RELATED WORK

To position PSM it is useful to distinguish between pro-
gramming paradigms and software analysis methods. A pro-
gramming paradigm is a collection of programming languages
that share common traits (e.g., object-oriented, logical, or
functional programming). Analysis methods extract information

Uhttps://github.com/jku-isse/gradient



from programs (e.g., design pattern detection, clone detection).
PSM is an analysis method that analyzes a program given in
an object-oriented programming language and synthesizes a
probabilistic model from it.

Probabilistic programming is a programming paradigm in
which probabilistic models are specified. Developers describe
probabilistic programs in a domain-specific language (e.g.,
BUGS [2]) or via a library in a host language (e.g., Pyro [3],
PyMC [4], Edward [5]). In contrast, PSM analyzes a program
written in a traditional programming language and translates
it into a probabilistic program. This difference also holds
for modeling concepts like Bayesian Networks [6] or Object-
Oriented Bayesian Networks [7], [8] that can be implemented
via a probabilistic programming language.

Formal methods are a programming paradigm that leverages
logic as a programming language (e.g., TLA+ [9] or Alloy [10]).
Stochastic model checking [11] introduces uncertainty in
the rigid formalism to model, e.g., natural phenomenons.
Developers specify the behavior and provide the state transition
probabilities in a special-purpose language (e.g., PRISM [12],
PAT [13], CADP [14]). Again, PSM analyzes a program
and synthesizes a PM allowing developers to work with the
programming language of their choice.

Symbolic execution [15] is an analysis method that executes
a program with symbols rather than concrete values (e.g., JPF-
SE [16], KLEE [17], Pex [18]). It can be used to determine
which input values cause specific branching points (if-else
branches) in a program. Probabilistic symbolic execution [19]
is an extension that quantifies the execution, e.g., branching
points, in terms of probabilities. This is useful for applications
that quantify program changes [20] or performance [21]. Proba-
bilistic symbolic execution operates on the statement level while
PSM abstracts statements capturing, e.g., inputs and outputs
of methods. This abstraction makes PSM computationally
scalable while symbolic execution suffers from state explosions.
Furthermore, this abstraction shifts the analysis focus to the
program semantics compared to the statement semantics (e.g.,
what happens between methods vs. what happens at the if
statement).

Probabilistic debugging [22], [23] is an analysis method
that supports developers in debugging sessions. The debugger
assigns probabilities to each statement and updates them
according to the most likely erroneous statement. Again, in
contrast to PSM, they operate on statement level. Another
difference is given in the methodologies life cycle. Debugging
has an operational life cycle only valid until the bug is found.
PSM and the resulting models are intended to be persisted
along with the matching source code revision. This allows,
e.g., method-level error localization, by comparing multiple
revisions of the same model.

Invariant detectors [24], [25], [26], [27], [28], [29] learn
assertions and add them to the source code. This helps
to pinpoint erroneous regions in the source code. Invariant
detectors learn rules of value boundaries of statements (i.e.,
pre- and post-conditions), not the actual distribution. However,
this distribution allows PSM to generate new data enabling
causal reasoning across multiple code elements.

III. ILLUSTRATIVE EXAMPLE

Consider as our running example the Nutrition Advisor
that takes a person’s anthropometric measurements (height
and weight) and returns a textual advice based on the
Body Mass Index (BMI). Figure la shows the class dia-
gram of the Nutrition Advisor, consisting of three core
classes and the Servlet class. Classes considered by PSM
are annotated with Model (e.g., Person). Figure 1b de-
picts a sequence diagram of one program trace with con-
crete values. The Servlet receives properties (e.g., height,
weight, or gender) with which it instantiates a Person ob-
ject (not shown). NutritionAdvisor.advice () takes
this Person object, extracts the height (168.59) and
weight (69.54) and computes the person’s BMI (24.466) via
BmiService.bmi (-). The result is a textual advice based
on the BMI ("You are healthy, try a ..."). Note that, for the
sake of simplicity, Figure la only shows a subset of the code
elements from the real Nutrition Advisor (e.g., Person.name
or Person.age are omitted). Given a program such as the
Nutrition Advisor, PSM can be used to build a network of
probabilistic models with the same structure and behavior.

IV. MOTIVATING APPLICATIONS

PSM is a generic framework that enables a wide range
of predictive and generative applications. This section lists a
selection of possible applications.

A. Predictive Applications

Predictive applications seek to quantify, visualize, infer and
predict the behavior and quality of a system.

Visualization and Comprehension [30], [31], [32] appli-
cations help to understand software and its behavior. This
includes the visualization of code elements and non-functional
attributes such as performance. The PMs are the source of the
visualization showing the global but also contextual behavior
across code elements. For example, Figure 2b visualizes the
height-property in which typical and less typical values can
be seen in a blink. P(Height | Gender = Female) visualizes
a context-aware behavior how gender affects the height.

Semantic Clone-Detection [33], [34] applications detect
syntactically different but semantically equivalent code frag-
ments, e.g., the iterative and recursive version of an algorithm.
Traditionally, clone detection compares source code fragments
focusing on exact or slightly adapted clones. However, semantic
equality is beyond purely static properties of source code. PSM
can detect method level clones by comparing their models. The
comparison can be realized, for example, via statistical tests on
sampled data [35], [36], [37] (simple automated decision), via
visualization techniques such as Q-Q plots [38] (comprehensive
manual decision), or a combination these.

Anomaly Detection [24], [39], [40], [41] applications mea-
sure the divergence between a persisted PSM model and a newly
collected observation. These applications can be deployed into
a live system, in which components are monitored and checked
against their models. A threshold checks for unlikely runtime
observations z (i.e., p(Weight = weight,e,,) < .1) triggering
additional actions in cause of a failure. x and its effects on
other elements can then be investigated with, e.g., visualization



